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In previous work we introduced an anonymising proxy scheme — called Flocks — to be used for browsing privacy. Flocks is similar to Crowds in
that each proxy randomly decides whether to forward any request it receives to the destination Web server, or whether to forward the request to another
proxy. In this manner request chains are formed that hide the details of an originator of a request from the destination server as well as from the various
proxies.

Flocks differs from Crowds (and similar Privacy-enhancing Technologies or PETs) because it caches pages that are requested. Unlike related PETs,
Flocks is intended for deployment within an organisation. Caching minimises the need for communication between an organisation and external content
providers, decreasing cost and potentially increasing access speed. Logging in Flocks is designed to balance privacy with the need to conduct forensic
investigations when required (with safeguards to prevent unauthorised breaches of privacy).

Two parameters determine the behaviour of Flocks:α is the probability with which any proxy will forward a request to an external server (rather than
to another proxy) andN is the number of proxies in the system. In previous work we analytically determined the impact of these two parameters on
privacy and performance aspects of Flocks.

The current paper reports on simulations that were performed to gain deeper insight into the behaviour of Flocks. The simulations confirm the analytic
results of our previous work. They also shed light on performance-related issues such as the number and positions of access to external servers, saturation
levels and traffic patterns. This information will be useful to decide on appropriate values ofα andN from a performance point of view.

The simulations also highlight the problem of overly long chains that will occasionally occur. A simple solution is proposed and tested empirically.
The privacy and performance implications of this solution are discussed; it is found that the solution is usable, but has a profound impact on the choice of
theα andN parameters.

Categories and Subject Descriptors: H.3.5 [Online Information Services]: Data sharing—Security; H.2.7 [Database Administration]: Security, in-
tegrity, and protection; K.4.1 [Public Policy Issues]: Privacy

General Terms: Management, Reliability, Security

Additional Key Words and Phrases: Personal privacy, privacy architecture, privacy-enhancing technologies

1. INTRODUCTION

Every evening after a long day’s work, John goes to his local pub and buys everybody who is there a beer. After the single
beer he goes home to enjoy the rest of the evening with his family. Everybody who knows John, knows him as a friendly,
generous person. However, as time goes buy, a computer system also begins to ‘know’ John: His credit card company
computer begins to ‘see’ that John is spending a substantial amount on liquor every evening — perhaps the equivalent of
ten or twenty beers. Before long the computer profiles John as an alcoholic. . .

This simple scenario illustrates one of the problems when computers record humans’ actions: because such information
is often collected out of context, a different picture may emerge of an individual than the true picture. Truth, however, is
not the only criterion to be used when considering the implications of recorded information. Individuals also have the right
to control some information about them that should rightfully be considered private — even if it happens to be true. The
division of life into public and private spheres dates back to Aristotle [DeCew 2002]; it posits the existence of a domain
that is not part of the public. While this dichotomy is overly simplistic, it demonstrates the long-held view that some
information is properly private.

Parent “defines privacy as the condition of not having undocumented personal information known or possessed by
others” [DeCew 2002]. The merits of this view will not be discussed in the current paper; suffice to say for the moment
that the view has received some support.

Against this backdrop, consider the fact that logging implies the ‘documentation’ of one’s actions. A case can be made
that one’s actions cannot be considered private if logged at all. However, even if one does not accept Parent’s view,
information generated in an employer-employee relationship is often seen as the property of the employer — especially
if the computers used are the property of the employer. And even if the data is not considered as the property of the
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employer, system administrators often have unrestricted access to such log data — and can move the information to the
public domain.

One may argue that in this environment only an employee’s private Web usage needs to be protected (if private use is
tolerated at all). However, even official use of Web resources can reveal much about an individual: Work times and patterns
are revealed; the manner in which more complex environments, such as search engines, are used can, in principle, be used
as ‘psychometric tests’, from which personality traits of employees’ may be inferred that they do not even know about
themselves. Moreover, as indicated at the start of this paper, context is often not recorded: an employee’s specific task on
a given day may require him or her to use Web resources that may be frowned upon — and will be frowned upon when
these logs are looked at years later, when knowledge about the context has long been forgotten.

Flocks is a PET proposed earlier by us [Olivier 2004] that is to be used in such environments. It is based on anonymous
proxies that operate similar to those used by Crowds [Reiter and Rubin 1999]: A proxy forwards any request it receives
with probabilityα to the external server; it forwards the request with a probability1−α to a random (other) proxy. Flocks
differs from Crowds because is caches requests at these proxies: if a requested page is already available at a given proxy,
the proxy simply retrieves it from the cache (if it has not expired), rather than forward the request to an external server or
another proxy. Since Flocks proxies are intended to be deployed in a single organisation, the number of external requests
are minimised; this should yield lower communication costs and higher response speeds than Crowds. A second significant
difference between Flocks and Crowds is the fact that the former is instrumented for (warranted) forensics — something
that can be justified in the given application area [Olivier 2005].

In previous work [Olivier 2004] we identified the two major parameters that influence the behaviour of Flocks:α that
has been described above, andN , the number of proxies in the system. In this earlier work we determined the impact of
specific choices for these two parameters analytically.

The current paper describes simulations that were performed to gain deeper insight into the operation of Flocks. Simu-
lations can better deal with the complexities introduced by caching than statistical analysis can. Simulations are also able
to highlight extreme operating characteristics — and can be used to answer ‘what if’ questions by subtly changing the
behaviour of the system.

The remainder of the paper is structured as follows. Section 2 contains background information. Section 3 describes the
simulation programs used. Section 4 compares the observed simulated results with the results expected from our earlier
statistical analysis [Olivier 2004]. Next, Section 5 discusses the patterns that emerged for fetching the data from external
servers. The observations in the latter two sections impact on the privacy characteristics and the ‘cost’ of the system. One
of the observed undesirable characteristics was (as expected [Olivier 2004]) long trail (or chain) lengths in some cases.
While these cases were rare, they are still disconcerting. Section 6 addresses this issue with a minimum impact on the
privacy characteristics of the system; however, it is necessary to reconsider the choice ofα andN if this solution is used.
Section 7 concludes the paper.

2. BACKGROUND

This section describes the background against which the research described in this paper has been conducted. Since this
background has not changed since our previous work on Flocks, this section is heavily based on the background provided
for an earlier paper on Flocks [Olivier 2005]; in fact, this section is an (almost) verbatim copy of Section 2 of the earlier
paper.

Over the years a number of PETs have been introduced. Many of the current ideas were already present in Chaum’s
1981 [Chaum 1981] notion of a mix. In the mid 1990s attention turned to specific technologies used on the Internet (and,
more specifically), the Web. This focus was based on the realisation that interacting on the Internet often leaves a trail
that may be used to learn more about an individual than should be tolerated. The PETs developed in the 1990s were
mostly intended to allow the individual to exert control over what information is made known to other parties, by using
appropriate intermediaries. These intermediaries could be (fixed) third parties, such as Anonymizer [Caloyannides 2000],
Janus (or Rewebber) [Rieke and Demuth 2001] or LPWA [Gabber et al. 1999]. The third parties could also be (randomly
or deterministically) selected from a set of available proxies or routers. Such ideas were used in Crowds [Reiter and Rubin
1999] and Onion-routing [Goldschlag et al. 1999].

In more recent times attention has turned to PETs that can be employed inside an organisation to help the organisation
protect the information it has collected about individuals. Examples of developments in this regard include Hippocratic
databases [Agrawal et al. 2002] and E-P3P [Karjoth et al. 2003; Ashley et al. 2003]. It has been argued that the costs (to
the organisation) associated with deploying such a PET will be fully recovered by customer satisfaction — and even lead
to increased business opportunities [PrivacyRight 2001; Systems 2000; IBM 2002]. In the case of Flocks a similar case
could be made about the benefits employee satisfaction hold for the organisation.

Flocks [Olivier 2004] was introduced as a PET based on technologies such as Crowds, but one intended for deployment
within an organisation. In this environment it was intended to minimise external traffic by caching Web pages retrieved
from the Internet as far as possible, but yet minimised an administrator’s (or even a manager’s) ability to breach the privacy
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of users by just browsing logs (or more actively profiling users). However, a fundamental tenet behind Flocks was the fact
that the PET does not reduce users’ accountability — and that forensic investigations should be possible where a legitimate
reason exists for such an investigation. In essence, Flocks operates as follows. Each user operates a personal proxy and
acts as trustee for the logs generated by that proxy. When a user submits a request, it is submitted to this proxy. The proxy
serves the request from cache, if possible. Else it forwards the request to the external destination, with probabilityα. If it
does not forward the request to the destination, it forwards it to another proxy that is chosen randomly. In the latter two
cases, the result is cached (if possible), once it arrives. Requests from other proxies are dealt with similarly.

Many overviews of PETs have been published [OECD 2002; Goldberg et al. 1997; Froomkin 1996; Seničar et al. 2003].
For a structured view of PETs, see the Layered Privacy Architecture (LaPA) [Olivier 2003].

3. SIMULATING FLOCKS

A number of simulation programs were written for this study. The principle behind all of them is that they simulate requests
for a single page over time.

At this point we are assuming that all pages behave in a similar manner: when it is requested, it will eventually be
retrieved from the external server or a cached copy will be found. This copy will be returned along the trail of proxies
used, and will be available from any of these proxies during subsequent requests. The facts that (a) pages in caches become
stale after some time period, and (b) that this time period differs for different pages — even to the extent that some pages
cannot be cached — were ignored during the simulations (and were ignored during our earlier analysis [Olivier 2004]).
The implications of these restrictions will be considered in later work. We contend that the simulation is accurate for cases
where public information is retrieved from the Web. Cases such as Internet banking require each page to be retrieved in
any case, and will behave like other pages where only one copy needs to be retrieved. These cases will typically use a
single trail of average length, and are not considered further in this paper.

The simulation programs therefore start with an array with a Boolean entry for each proxy in the system. Initially all
these entries are set to false, since the page under consideration is not cached at any proxy. A round of requests then start
where the page is successively requested from random proxies. For each request, the request is satisfied if the page is
cached at that proxy. Else, with probabilityα, it is assumed that the page is requested from the external server. If this does
not happen, the page is requested from another random proxy, where this process is repeated recursively. Once a page is
found (whether from an external server or from another proxy) the cache flags for all the proxies on the trail are set to true
to indicate that the page is now available from that proxy’s cache. After the number of requests per round have been issued,
the caches are marked as clear and a next round is begun.

During the process various parameters, such as the number of times the page needs to be fetched from an external server
and the saturation (ie the proportion of proxies that have the page cached), are calculated.

To illustrate the process, consider the following output generated from one of the rounds from one of the simulation
programs. This was the first round of the simulation data used to determine mean and median trail lengths and the fetch
patterns to external servers. For this round the parameters wereα = 0.05 andN = 256.

#1,+21,2,1,3,+14,+7,+2,3,6,4,3,5,3,1,2,1,4,+5,8,2,2,6,2,1,8,1,2,3,2,+2,2,2,3,...

The#1 merely identifies the line as round 1. The21 that follows, indicates that the first request of this round visited 21
proxies (ie it had a trail length of 21). The21 is preceded by a+ to indicate that the request resulted in a fetch from an
external server. The21 is followed by a2: this means that the second request of the first round visited two proxies. The
absence of a+ indicates that the request was answered from a cached copy.

It was (arbitrarily) decided that each round will consist of 80 requests. This number of requests were indeed enough to
observe the trends as more and more requests were sent; in fact the behaviour of the system stabilised long before the 80th
request.

The number of rounds also had to be decided on. Table I lists some of the (incremental) key observations after every 100
rounds (forN = 128, α = 0.05). Again it is clear that most of the values stabilise early in the process. The one significant
exception to this is the trail length — in theory very long trail lengths are possible, and it literally is necessary to run the
simulation for a 1000 rounds to see the once in a thousand long trail lengths. Obviously, more rounds would have probably
led to observation of even longer trail lengths. However, for most purposes, 1000 rounds were more than enough, and this
number of rounds were therefore used.

4. EXPECTED RESULTS

The first purpose of the simulations was to confirm the results in our earlier paper [Olivier 2004] where statistics were
determined analytically.

Two of the measures determined in the earlier work were the mean and median length of trails. The mean length was
determined to beν = 1

α , while the median length was calculated asµ = − log1−α 2. An optimum level of privacy is
achieved when typical trails are neither too long, nor too short: If the trail of an uncommon request is too long, the fact that
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Number of Trail length Saturation External fetches
iterations Mean Median Maximum Mean Mean Median

100 19.78 13 104 74.6% 4.7 5
200 19.24 13 145 74.2% 5.0 5
300 18.87 14 145 74.3% 5.1 5
400 19.79 14 145 74.5% 5.0 5
500 20.07 15 145 74.5% 4.9 5
600 19.69 15 145 74.5% 4.9 5
700 19.49 14 145 74.5% 5.0 5
800 18.89 14 145 74.4% 5.0 5
900 18.92 13 145 74.4% 5.0 5

1000 19.36 14 156 74.4% 5.0 5

Table I. Some incremental simulation observations after every 100 rounds forN = 128, α = 0.05. Expected trail length mean was 20; expected trail
length median was 13.5.

Mean Median
Expected N = 64 N = 128 N = 256 Expected N = 64 N = 128 N = 256

α = 0.01 100 98.24 98.30 98.70 68.7 71.5 69 67
α = 0.05 20 19.42 19.36 19.75 13.5 15 14 13
α = 0.10 10 9.59 10.18 9.73 6.6 7 7 7

Table II. Expected and observed trail length means and medians
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Figure 1. Expected and observed saturation forα = 0.05 andN = 128 (left) andα = 0.1 andN = 256 (right)

it has been issued will be obvious from too many proxy logs; if the trail is too short it may be too easy to follow from its
point of detection to its origin, thereby violating the anonymity of the requester.

In the simulation the length of the trail of the first request of every round (when the cache is still empty) reflects the
typical trail length. Later requests will often ‘link’ to other trails by fetching information that they have deposited in a
cache. The effective length of such a ‘joined’ trail will then be the actual length measured, plus the length from the cache
to the endpoint of that trail. Table II lists the expected and observed (simulated) means and medians of the first requests
for the cases simulated. It is clear that the observed measures are indeed close to what was expected.

In our earlier work we also derived a formula to calculate the expected saturation after a given number of requests have
been processed. Thesaturationrefers to the proportion of proxies that have the requested page cached. The saturation after
requestn has been processed was denoted asσn. According to our analysis

σn = σn−1 +
(α + ασn−1)σn−1

(1− σn−1α)2N

Figure 1 plots the expected and observed saturation for two cases (α = 0.05, N = 128 andα = 0.1, N = 256). The
derived formula assumed thatN � µ. The graphs for all the simulated cases where this applies show similar good
correlation as the two depicted in this paper do.1

The calculated formula was specifically determined somewhat conservatively:µ was used as an estimate forσ1 rather

1This restriction does not, in general, hold for theα = 0.01 cases simulated: forα = 0.01, the median isµ = 68.97; simulations were run for
N ∈ {64, 128, 256}.

Proceedings of SAICSIT 2005



108 •

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

Request number (simulated 1000 times)

Ti
m

es
 fe

tc
he

d 
ex

te
rn

al
ly

α=0.01,Ν=64
α=0.01,Ν=128
α=0.01,Ν=256
α=0.05,Ν=64
α=0.05,Ν=128
α=0.05,Ν=256
α=0.1,Ν=64
α=0.1,Ν=128
α=0.1,Ν=256

Figure 2. Number of external fetches required per 1000 rounds

thanν to minimise the influence of (rare but significant) very long trails. This is reflected in Figure 1 forα = 0.05 and
N = 128 where the observed saturation is initially marginally higher than the (conservatively) projected saturation. Where
α = 0.1 andN = 256 the significant difference between average and median trail lengths on the one side, andN on the
other side, leads to an almost perfect match between the expected and observed saturation levels.

Figure 1 supports the correctness of the earlier calculation ofσn and the current simulation of it.

5. EXTERNAL FETCH PATTERNS

The intention of the previous section was primarily to validate the previous and current work by comparing results about
the same issues determined in vastly different manners. The current section turns the attention to facets of Flocks that can
be learnt from the simulation that are hard to derive analytically. More specifically, this section considers external fetch
patterns.

Figure 2 shows the points at which pages where fetched from external servers for each of the simulation runs. The figure
clearly demonstrates the (inverse) S-curve behaviour of the system: Initially, most requests have to be fetched from the
external server. Then, once the saturation level begins to increase, the number of requests that need to be sent to an external
server drops rapidly, until all further requests are served from cache. Note the relatively small number of times a page
needs to be requested: for many of the simulations run, 10 or fewer external requests were sufficient to get the system to
the point where all future requests would be served from cache, or at least to the point where the S-curve’s steep downward
slope has already begun. Again, this correlates with our findings in the earlier paper: The saturation very quickly increases
to the point where almost all subsequent requests are served from cache.

External fetches are not primarily privacy-related: they affect the cost of using the system. The cost for external fetches
are significantly more expensive than retrieving a page from cache. In the original work on Flocks the assumption was
made that internal requests have no cost (at least, when compared with the cost of requests that are sent to an external
server). In a typical organisation that does not use a PET such as Flocks, a single external fetch will be sufficient for
information pages irrespective of the number of times clients request them (until the cached copy becomes stale); Figure 2
re-emphasises that — depending onα andN — the communication costs of using Flocks will be multiple times that of the
organisation that does not use Flocks. On the other hand, if the organisation relies on a PET such as Crowds, ifn requests
are issued, alln will result in external fetches. Hence, Flocks has a communication cost significantly lower than that of
Crowds.

The next question to address is: At what points are requests sent to external servers? Table III gives part of the answer.
It contains the median points at which requests are sent to external servers. Note that the values increase rapidly — up to
the point where no further requests are sent to the external server since all requests can be served from cache.

Table III may give the false impression that external requests tend to again occur closer to one another towards the right
of the table. This impression is due to the fact that the caches have, for many rounds, been filled during the later stages and
no further external requests are necessary. Therefore the rounds that play a role in these later numbers are the ones where
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α N Median request
64 1 15 22 35 - - - - - -

0.01 128 1 18 35 52 51 - - - - -
256 1 14 29 41 48.5 56 - - - -
64 1 5 15 24 34 45 41.5 59 70 -

0.05 128 1 3 10 22 30.5 40 46 53.5 57 56
256 1 2 6 13 20 29 36 45 51 56
64 1 3 6 13 22 31 38 44 45 50

0.1 128 1 2 5 9 13 20 26 33 39 44
256 1 2 4 6 8 12 16 20 25 31

Table III. Median points at which the first 10 requests are sent to external servers

α N Earliest request Latest request
64 1 2 4 18 - - - - - - 1 79 59 72 - - - - - -

0.01 128 1 2 3 12 50 - - - - - 1 78 80 74 52 - - - - -
256 1 2 3 7 18 38 - - - - 1 80 80 80 80 69 - - - -
64 1 2 3 4 5 7 8 17 41 - 1 78 80 80 80 78 79 73 70 -

0.05 128 1 2 3 4 5 7 10 16 17 33 1 72 78 80 80 80 78 80 80 80
256 1 2 3 4 5 6 8 10 13 17 1 66 77 80 79 80 80 80 80 79
64 1 2 3 4 5 6 7 9 11 14 1 80 77 78 79 80 80 80 80 79

0.1 128 1 2 3 4 5 6 7 8 10 13 1 78 80 74 77 80 80 80 80 80
256 1 2 3 4 5 6 7 8 9 10 1 17 31 43 59 71 76 80 80 80

Table IV. Earliest and latest points at which requests are sent to the external server

the caches have not been filled earlier in the process and more requests need to be sent to outside servers later on.
To get a better understanding of the variance inherent in the process, consider Table IV. This table shows the earliest

and latest points at which requests have been sent to the external server. Note the many occurrences where all the initial
requests have been sent to the external server. In many cases it is possible that a page that is requested, say, five times,
will indeed be requested five times from the external server — thereby increasing communication costs significantly over
the median case, where such requests will in most cases only lead to one or two actual external fetches. If one considers
the Latest requestpart of table IV it becomes clear that for most simulations, cases occurred where the initial requests
essentially filled up all caches. This is illustrated by those cases where the second external fetch only occurred when the
page was requested the 80th time. The situation where the first requests actually filled the cache is, in fact, not depicted
in table IV. Forα = 0.01 andN = 64 out of the 1000 rounds, only 170 required a second external fetch — in 830 cases
the first requests did fill all the caches in the system. Sinceα = 0.01 does lead to very long trails, let us rather consider
α = 0.05. In these cases, 133, 33 and 2 rounds forN = 64, N = 128 andN = 256, respectively, filled all the caches with
only one external request. Forα = 0.1 andN = 64, eight rounds filled all the caches from the first request. Neither of the
two other values tested forN with α = 0.1 could serve all subsequent requests from just the first request.

In some cases, serving all requests using just one external request is good news: Second, third, and subsequent requests
establish trails that join one of the former trails. This gives the benefits of a trail hiding the user’s identity from the
target server and the other proxies in the manner Flocks was designed to work, yet costs very little in terms of external
communication. However, in some cases this ‘good’ characteristic is actually caused by nonbeneficial behaviour: one of
the early requests causes such a long trail that the caches in (almost) all the proxies are filled immediately.

The occurrence of first requests that fill all the caches is a reason for concern. Firstly, it is a concern from a performance
point of view: A request typically has to be ‘bounced’ from proxy to proxy many times to fillall the caches in the sys-
tem. While the assumption that internal communication costs are essentially free, such long trails will cause performance
degradation; a slow response is unavoidable in such cases. The second concern raised goes to the heart of the purpose of
Flocks: If a supposedly private request is indeed ‘bounced’ back and forth between proxies to the extent that it occurs in
(almost) all the proxy caches after being requested once, the request will not only occur inall the proxy logs: to fill the
caches it will in all likelihood have to visit several proxies more than once. This will cause the PET to make this request
more visible to anyone who looks at the log, than it would have been, if no PET were used. While this will happen rarely,
the mere possibility of this happening is serious. We consider this in Section 6 below.

Before leaving the topic of saturation, however, consider Table V. Figure 1 only illustrated two cases; Table V gives
the saturations after 80 requests for the other cases. While such high saturations at early points are good for performance
reasons (since queries can be answered from cache), they also indicate signifcant storage requirements at each of the
proxies. This paper only notes this problem and leaves discussion of it for later research.
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α N

64 128 256
0.01 93.18% 81.20% 64.54%
0.05 88.84% 74.44% 58.53%
0.1 87.48% 72.92% 56.13%

Table V. Average saturation levels after 80 requests

α N Median
64 128 256

0.01 630 856 806 68.97
0.05 116 156 153 13.51
0.1 69 69 69 6.58

Table VI. Maximum observed trail lengths

Without short-circuit
Parameters Trail length Saturation Ext Fetches
α N Mean Med Max Mean Max Mean Med
0.01 64 98.24 71.5 630 93.18 100 1.20 1
0.01 128 98.30 69 856 81.20 100 1.47 1
0.01 256 98.70 67 806 64.54 97.3 1.96 2
0.05 64 19.42 15 116 88.84 98.4 3.12 3
0.05 128 19.36 14 156 74.44 86.7 5.02 5
0.05 256 19.75 13 153 58.53 69.1 7.61 7
0.1 64 9.59 7 69 87.47 98.4 5.93 6
0.1 128 10.18 7 69 72.92 84.4 9.58 10
0.1 256 9.74 7 69 56.13 65.6 14.56 14

With short-circuit
Trail length Saturation Ext Fetches

Mean Med Max Mean Max Mean Med
9.95 10 28 88.24 98.4 3.17 3

13.77 13 41 74.26 85.9 3.68 4
17.90 17 55 59.41 68.8 4.30 4
8.23 8 30 87.55 98.4 5.07 5

10.22 9 34 73.12 87.5 6.98 7
11.85 10 48 57.66 68.4 9.6 10
6.43 6 23 86.88 96.9 7.4 7
7.39 6 37 72.00 82.8 11.1 11
8.00 6 46 55.64 64.4 16.0 16

Table VII. The effect of short-circuiting

6. ON LONG TRAILS

The problem of long trails has been introduced in the previous section from a saturation perspective. However, the problem
is already evident from the basic statistics calculated from the simulation data. Table VI shows the maximum observed trail
lengths. It can be seen that these maximums were around ten (or even more) times the median trail length for the specific
value ofα.

The typical random behaviour of the system makes it hard to limit maximum trail lengths. One option is the following:
When a proxy gets a request for a page that it does not have cached, it makes a note of the request. When it gets a second
request for that page and still does not have the page cached, it obtains the page from the external server. We will refer to
this process asshort-circuiting. Table VII shows the effects of short-circuiting.

It is clear from Table VII that short-circuiting leads to a dramatic decrease in maximum trail lengths — in particular for
those cases where the expected average trail length (ν = 1

α ) is relatively large when compared toN . For these cases the
cost in terms of external fetches also increases dramatically (from 1 or 2 for the first 80 requests to 3 or 4). On the other
end of the spectrum (typically whereα = 0.1) the effect on maximum trail length is not that dramatic, but the increase in
cost is also less pronounced. The most interesting cases are the middle range ones (whereα = 0.05). In these cases the
maximum trail lengths have indeed been reduced significantly (from 116, 156 and 153 to 30, 34 and 48, respectively), and
cost (again in terms of external fetches) has increased by about 50% (from 3, 5 and 7 to 5, 7 and 10, respectively). While
these observations have a direct bearing on costs, the mean and median trail lengths also hold implications for privacy. The
observed median trail lengths forα = 0.05 have changed from 15, 14 and 13 to 8, 9 and 10, respectively. The significance
of these changes on privacy clearly depends onN : A change from 15 to 8 forN = 64 is clearly more significant than a
change from 13 to 10 forN = 256: In the larger number of proxies a small change in median trail length will not have
a significant impact on the ‘visibility’ of the request in the proxies. In the former case, a typical request will now only
be logged in 8 out of 64 proxies, making it less visible than the original case were it would have been logged in 15 times
in the 64 logs (with, perhaps, some duplicates at the same proxy); this decreases visibility of the request and increases
privacy. On the other hand, there will now only be 8 intermediaries between the destination and the requester — compared
to 15 in the original case. This makes it easier to trace the request and therefore decreases privacy. The optimum balance
clearly depends on the specific situation and cannot be prescribed here. What is clear is that short-circuiting has a potential
performance increase (in terms of reducing the maximum trail length) as well as a potential cost increase (by increasing
the number of external fetches). In a similar fashion, as illustrated, it can benefit or detract from privacy. Its use should
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thus be carefully considered — it may indeed be beneficial in certain circumstances.
Note that we have not suggested thatα = 0.05 is ideal; the most significant effects were seen in these example cases for

α = 0.05. The effect depends on the relative magnitude of1/α compared toN ; for other values ofN a more significant
impact may therefore be seen for other values ofα.

Another option, as an alternative to short-circuiting, to consider is the following: Suppose each proxy attaches some
“time to live” field to its request; whenever the request is forwarded to another proxy, this field is decremented. When a
request arrives at a proxy and this field is zero, the proxy has to obtain an answer: if that proxy does not have the page
cached, it has to send it to the external server to get answered with probability1 rather thanα. Clearly the initial time to
live has to be chosen randomly, with some maximum. Care also has to be taken in this case: If a proxy receives a request
with the time to live equal to the maximum, it knows that the request had to have originated from the predecessor proxy
node. Hence a proxy should never (or hardly ever) use this maximum value. However, this enables a proxy to make a
similar conclusion when a time to live of one less than the maximum is encountered. Recursively, this leads to problems
for any chosen time to live. We therefore do not consider it further in the current paper. We have, however, not explored
the use of some large maximum number as initial value (but only to use it rarely). The probability that when such a large
number is used as time to live that that particular trail will turn out to be one that was going to be long in any case seems
rather remote. This option should therefore be considered in future research.

7. CONCLUSION

This paper described simulations of the Flocks PET. The simulations were used to confirm earlier results that were deter-
mined analytically. The paper then proceeded and considered the external fetch patterns as observed during the simulations
in greater detail.

The paper also considered the problem of overly long trails. A solution (referred to as short-circuiting) was tested and
found useful — but one that has to be tested against the privacy requirements of a given situation.

Future work will investigate other solutions to the long trail problem — such as the solution alluded to at the end of
Section 6. Future work will also attempt to better characterise the S-curve observed for external fetch patterns. In addition,
future work will consider the impact of pages that become stale because they have been cached for too long and therefore
needs to be refetched. The potential high storage requirements of Flocks proxies mentioned in Section 4 has also been left
for future research. A prototype implementation is also planned to study the effects of some observations (such as the cost
assumption for internal communication) in a more realistic environment.
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