

Abstract— Digital forensics plays a crucial part in the

investigation of crimes involving electronic equipment.
Masses of digital evidence collected at a crime scene will
have to be analyzed by digital forensics experts in an
attempt to discover how a digital crime was committed
and by whom. This is a labour-intensive and time-
consuming process which can be improved using
specially designed digital tools. This paper proposes an
open-source forensics platform that may be used as a
base for other digital forensics projects. The proposed
forensics platform may be used by researchers as a base
to develop digital forensics research prototypes and by
industry to conduct digital investigations after it has
become apparent that a digital crime has been
committed. This aim of proposed platform project is
enable researchers to develop forensic prototypes more
rapidly and help to ensure the quality of the forensics
tools making use of the platform.

Index Terms—Digital forensics, forensics platform
architecture, forensic system design.

I. INTRODUCTION

D igital forensics plays a crucial part in the investigation

of crimes involving electronic equipment. Digital evidence
collected at a crime scene will have to be analyzed and
connections between the recovered information, physical
entities and physical events need to be made and proven.
Investigators of digital crimes usually have a lot of complex
questions to answer in a short amount of time [3]. The
amount of time taken up by the investigations may be
attributed to the complexity and mass of digital evidence
collected. As computing technology improves and the
storage capacities of digital devices increases, it may not be
feasible to manually inspect devices with sizes ranging in
gigabytes to terabytes [1]. Examiners therefore need to
constantly improve their collection and examination
methodology and tools in an effort to improve their
efficiency [9].
This paper will propose an open-source digital forensics
platform that may be used by academics to develop digital
forensics prototypes and by industry to perform digital
investigations.
The remainder of the paper is structured as follows. Section
2 and section 3 will discuss the need for a forensic platform
while section 4 will expand on the functionality that needs
to be implemented by such a platform. Section 5 will
discuss a proposed architecture that will address forensic

R Koen is a member of ICSA, University of Pretoria, South-

Africa (e-mail:renico@lantic.net).
M.S. Olivier is a member of ICSA and with the Department of

Computer Science, University of Pretoria, South-Africa (e-mail:
martin@mo.co.za).

needs specified in literature. Section 6 will discuss the
implementation of the specified architecture, while section 7
will discuss future work that needs to be conducted. This
paper will finally be concluded with a brief summary in
section 8.

II. THE NEED FOR A FORENSICS PLATFORM

Different digital forensics tools are available to help
forensic examiners to perform forensic investigations.
Although these tools may have been tested and proven to
perform a specific task well in a specific environment [19],
it cannot be assumed that these tools can perform equally
well when used in conjunction with other digital tools. This
is definitely a problem, since digital investigators tend to
make use of a collection of tools to perform their
investigations [5]. These tools were not necessarily designed
to function together as a single cohesive unit to perform the
acquisition and analysis of digital evidence which may lead
to irregularities and inconsistencies in gathered evidence
which may ultimately lead to the exclusion of the digital
evidence in question from a case due to a lack of
trustworthiness.
Walker [18] informs us that it is critical that all collected
digital evidence is in an uncompromised state; a single file
with a timestamp later than the time of evidence acquisition
may lead to the situation where the evidence is excluded
from a case due to inconsistencies. It is therefore crucial that
the chosen tools used for the acquisition and analysis of data
is able to work together without compromising the digital
evidence in any way.
Some investigators may even attempt to create their own
acquisition and analysis tools [17]. These noble attempts at
creating tools that increase investigation efficiency are
usually rewarded by scepticism in court due to the fact that
it is extremely difficult to prove that a custom-made digital
forensics tool is forensically sound.
Rogers and Seigfried [15] inform us that the U.S. Supreme
court supplied certain criteria in the Daubert vs. Merrel case
that may be used as guidelines by courts to determine
whether or not evidence is admissible in court. The
following criteria have been specified to judge if evidence is
admissible, namely:

• Whether or not the evidence has been collected and
analyzed using theory and techniques that have
been tested thoroughly.

• Whether or not the techniques have been peer-
reviewed.

• The potential rate of error experienced with the use
of the chosen techniques.

• Whether or not the theory and techniques are
generally accepted by the scientific community.

Although different countries will have different guidelines,
the guidelines stipulated by the U.S. Supreme court still
serve as an excellent reference framework when it needs to

An Open-Source Forensics Platform
R. Koen and M. S. Olivier

be determined whether evidence is admissible or not. These
guidelines may therefore be used to evaluate the
admissibility of digital evidence collected by digital
forensics tools.
Only a few investigators have the time and skill to evaluate
and analyze their chosen tools to determine whether or not it
conforms to the stated criterion [5]. Even if the tools do
conform to the criterion and the tools perform perfectly in a
trusted environment, it may still give inconsistent results in
an untrustworthy environment [5]. This is largely due to the
fact that software applications will rarely contain all the
operating logic needed to perform basic functionality that
can be supplied by external drivers or the operating system;
the applications will rather rely on libraries or low-level
drivers to perform trivial tasks. Unfortunately these libraries
and drivers may be compromised to produce results that are
inconsistent with the digital evidence.

III. COMMERCIAL FORENSIC TOOLS

Commercial easy-to-use forensic toolkits tend to be
extremely expensive while their open-source (or free)
counterparts tend to have limited functionality and are very
difficult to use [11]. This scenario creates a problem since
not every investigation team has the funds to invest in an
extremely expensive software package and may have to turn
to the available open-source alternative with less
functionality which requires investigators with more
technical skills.
Another problem with forensic tools at the moment is
extensibility. Researchers continually invest their research
efforts into finding ways to improve the forensic analysis
process. Once a new theory has been developed it needs to
be proven. Although various ways exist to prove a theory, it
would make sense to ultimately create a prototype to
demonstrate the theory in action. At the moment it is an
extremely complicated and technically challenging process
to actually create a prototype that conforms to a list of
criteria needed to ensure that the results extracted by the
prototype is admissible in court. This is especially true if the
theory is not based on the bit or byte-level but on a higher,
more abstract view of a computer system. This is largely
due to the fact that the lower-level functionality also needs
to be implemented to serve as a basis for the higher-level
theoretical process developed through research that needs to
be proven. It would be ideal to build on the already-existing
functionality supplied by commercial forensic tools as the
base functionality has already been tested and proven
previously. Unfortunately it would be virtually impossible
due to the fact that the source code of these tools is not
available to the general public.
Only a handful of researchers possess the technical abilities
to actually create a fully-functional forensics tool. Some
would attempt to modify already available open-source tools
to conform to their requirements; others may try to write a
tool using a simulated environment to try to prove their
theory. Although these are steps taken in the right direction,
a solution is needed to allow researchers to perform rapid
prototyping on a tried-and-tested forensics platform in an
attempt to speed up digital forensics research efforts which
will ultimately lead to more digital forensic science
breakthroughs in shorter amounts of time.

IV. FUNCTIONALITY NEEDED IN A FORENSICS PLATFORM

According to Eckstein [7], what the term “digital forensic
analysis” entails depends largely on the source of evidence
at hand. As an example, consider the two different digital
crime scenarios: the first is a denial-of-service attack
executed by an individual located at a remote location; the
second is the unauthorized modification of a resource
located on a local computer not connected to a network.
Analysis of the first scenario will largely consist of scanning
through network logs and captured network traffic while
analysis of the second scenario will rely on the analysis of a
captured hard drive image. Although the forensic analysis in
the two different cases focuses on different forensic media
types, they are both equally valid evidence sources which
may be used to implicate the involved parties. It is therefore
crucial that a forensics platform supports the analysis of
sequential data (such as a captured network trace) as well as
relational data (such as captured disk images).

A. Digital evidence characteristics

The characteristics of digital evidence should be taken into
account when the possible functionality of a digital platform
is defined in an attempt to capture the needed functionality
more accurately. According to Wang [17], digital evidence
has the following characteristics:

• Digital evidence can be copied easily;
unfortunately the copying of digital evidence does
not guarantee a consistent copy of the original
evidence in question.

• Digital evidence is difficult to authenticate.
• Digital information is not well-perceived by the

human senses. Humans will therefore experience
difficulty understanding the captured digital
evidence in question.

A forensics platform should accommodate the stated
characteristics by supplying functionality that attempts to
solve the issues experienced with digital evidence. A simple
solution to the first two problems may be to supply the
forensics platform with secure hashing algorithms that can
be used to prove the authenticity of captured evidence. The
last problem holds a bigger challenge: how to structure
captured data in such a way that relevant information is
more visible to an investigator than data that may not be
helpful in solving a case. This characteristic is extremely
important, as it is crucial for investigators to create an
abstract view of the digital evidence in question [16];
without such an abstract view, much more time would be
needed to analyze and interpret which ultimately increases
the cost of the investigation process.

B. Evidence timelines

Another aspect that should be taken into account when
examining evidence is the relationship that exists between
the collected evidence and the time of collection. A clear
distinction should be made between the various stages or
timeframes that surround a digital investigation to create a
clearer forensic vision of key aspects involved with a digital
crime under investigation. These aspects may include: the
possible suspects, the digital events as well as well as the
connections between the suspects and the digital events that
lead to the perpetration of the crime. Evidence collected at
various stages will be related differently to these aspects. As

an example, consider evidence taken before the actual
perpetration of a crime and evidence taken after the event in
question occurred. Surely the type of information that will
be extracted from the two different evidence sources will be
different, each with different forensic intentions.

Evidence taken before the event took place will describe the
functioning (or malfunctioning) system, its users and its
environment. According to Pfleeger and Pfleeger [13], an
attacker must have three things to be able to perform a
malicious attack namely: method, opportunity and motive.
Although the type of evidence taken before a crime has been
committed may show indications that a computer crime will
be committed in the very near future, it shows no concrete
evidence of a crime that has been committed at the moment
of capture. However, it may be used to indicate motive,
opportunity or method which is needed to implicate possible
suspects once a crime has finally been committed.
Evidence taken after the event in question will largely show
the system’s state after the event took place. By examining
the captured system state, investigators should be able to
deduce which individuals were responsible for committing
the act in question.
The example illustrates that it is extremely important to
make a distinction between evidence captured at different
stages in an investigation. Three different stages have been
identified to illustrate the distinction between the
information conveyed by the captured data in different
stages of the investigation. These stages are:

• Pre-incident stage
• Incident stage
• Post-incident phase

It should be noted that the first two stages is characterized
by the capturing and analysis of live data while the last
phase is characterized by the analysis of static data captured
at a crime scene.

Incident Post-IncindentPre-Incident

Fig. 1. Various incident stages.

 The pre-incident stage focuses primarily on forensic
readiness. Forensic readiness describes the extent to which a
system is able to supply forensically-sound information to
aid the digital investigation process [12]. Special software
and hardware can be installed to monitor user actions and
minimize the likelihood that the users of these systems can
participate in mischievous activities without being noticed
through policy management and the enforcement of
restrictions. Suspicious activities may be captured and
logged as required.
The incident stage is concerned with the capture of digital
evidence while a crime is being committed. The incident
stage is primarily responsible for the capture and archiving
of events as they occur in real time. The primary goal of the
incident-stage it to implicate involved parties by capturing
identity-revealing information as the digital crime is being
committed. This stage is likely to be associated with the
capture of network traffic while a crime is being committed.
According to Corey et al. [6], instead of capturing a subset

of live data, it is better to capture all the available data and
analyze a subset of the data at a later point in time. This is
done to prevent potentially crucial pieces of evidence from
being “tossed away” during the capture process which may
cause investigators to reach false conclusions during later
stages of the investigation.
The last stage is the post-incident stage in which the entire
suspect and/or victim system’s state is captured and
analyzed after the digital crime has been committed. The
phase is characterized by the mass-archiving of the states of
the systems involved in the digital crime in an attempt to
determine how the systems were used and by whom.
A digital platform should be able to make a distinction
between the stages discussed previously to facilitate the
possible automation of the identifying of links between
evidence captured at the various stages of investigation that
would ultimately help investigators to pinpoint crucial
evidence located in masses of digital evidence data.

From a more technical point of view, a forensics platform
should support formats commonly associated with digital
forensics. These formats may include (but are not limited to)
FAT or NTFS for file system formats, TCPDump format
(the de-facto standard for captured network traffic [6]) and
other formats that would be considered common. By
supplying a platform that supports these file formats by
default, the task of the researcher trying to develop a new
and revolutionary forensics prototype would be simplified
greatly, as he/she only needs to focus on the research
question at hand, and not on the small details surrounding
the research.

V. A PROPOSED PLATFORM ARCHITECTURE
According to Casey [4], there is a difference between the
examination and the analysis phases of forensic evidence.
The examination phase is concerned with the extraction of
digital evidence from the scene of a crime while the analysis
phase is focussed on finding relationships between the
evidence, the events that took place as part of the crime and
the involved parties. From a technical point of view the
platform should physically support the examination phase
and supply the low-level functionality needed to perform the
analysis phase with ease. It would therefore be a good idea
to develop a platform that supports the acquisition, storage
and analysis of digital evidence.
It may often be the case that a few investigators will need to
work together on the same case; investigators may need to
add or analyze evidence simultaneously which means that
simultaneous access is required to the facilities needed to
store retrieve evidence. A conventional single-user system
design would therefore not be sufficient; instead it was
decided to use an architecture that allows multiple
investigators to capture, store and analyze forensic evidence
simultaneously while allowing researchers to quickly and
easily extend the functionality of the overall system. A
layered client/server architectural model was chosen to
adhere to these requirements.

A. The layered model

A layered model was chosen to allow researchers to easily
build their research prototypes on top of already-existing
lower-level processing layers. Not only will this layered
approach save researchers valuable time when

implementing a prototype, but it will also help to decrease
the amount of errors introduced as a consequence of
programming mistakes. This is due to the fact that lower-
level layers are likely to have been tried and tested by many
whereas freshly written code by a researcher may not have
been analyzed for errors as vigorously as its layered
counterparts.
Five different layers have been identified, namely:

• Physical
• Interpretation
• Abstraction
• Access
• Logging

The following diagram visually depicts the layers and the
relationship that exists among them:

Fig. 2. The layered architecture.

1) The physical layer

Digital evidence in a popular forensic format (such as a disk
image or TCPDump trace) is supplied to the physical layer.
Because digital evidence are likely to be supplied in byte-
by-byte copies of physical devices (RAM, ROM, hard
drive) or the state of a physical communication devices such
as an Ethernet card at a particular point in time, it would be
useful to develop a software emulation layer that emulates
the original physical device from which the evidence was
captured. The advantage of this approach is that it may be
possible to adapt already existing device driver
implementations to use the supplied software emulation
layer which may once again save implementation time. This
is due to the fact that custom driver does not have to be
developed scratch as already existing tried-and-tested driver
code may be modified and used.

2) The interpretation layer
The interpretation layer will typically consists of the
software performing the same task as traditional device-
drivers on a conventional system. The purpose of the
interpretation layer is to read the block or stream-level data
supplied by the physical layer and convert it into a file or
entry-level information which is commonly accepted by and
understood by programs as well as individuals.

To prove the physical layer/interpretation layer concept, a
prototype was developed by the author that made use of the
FreeDOS32 [8] Fat12/16/32 file system driver to supply
FAT support on the Interpretation-Layer level. The
FreeDOS FAT driver was modified with very little effort to
make use of the hardware emulation supplied by the

physical layer. The configuration was tested by mounting a
Fat12 image using the APIs supplied on the physical layer.
The data could then be accessed by using the supplied APIs
found on the interpretation layer. The results were excellent:
with minimal effort it was possible to create an application
that read from files stored in a FAT image. The experiment
proved that it was possible to use open-source device
drivers on the lower-level forensic layers with great success.
This means that it would actually be possible to extract
various types of device drivers from open-source projects
and incorporate it into the framework to supply support for
a wealth of different device formats.

3) The abstraction layer
The purpose of the abstraction layer is to supply
functionality that is not specific to any operating system or
computing platform in an attempt to hide unnecessary
details that may obscure an investigator’s perception of the
information depicted by the digital evidence. Another
purpose of the abstraction layer is to facilitate investigators
in identifying relationships that may exist among different
pieces of digital evidence. As Tallard and Levitt [16]
informs us, this functionality may be crucial to help filter
out data that is not relevant to help to create abstract objects
that can be interpreted in a relational manner to other
objects to save valuable investigation time.

4) The access layer
The purpose of the access layer is to supply investigators
with access to the information interpreted by lower-level
system layers. Search and indexing as well as access-control
functionality is expected to be implemented on this layer.
Visual abstraction may also be present on this layer in an
attempt to display captured digital information in a way
which is better perceived by humans. As discussed by Wang
[17], digital evidence is not well-perceived by the human
senses, and this functionality is therefore needed to help
investigators understand the colleted evidence in question in
a shorter timeframe.

5) The logging layer
According to the NIST reliable disk backup criteria [10], all
tools that take part in the backup of disk data should log all
errors that may occur as well as offer resolution to those
errors. Logging is an extremely important part of forensic
analysis and should not only include a list of system errors
that occurred, but it should also contain a list of steps that
the investigators executed to show how they got to their
case results. These logs may later be used in court to prove
or disprove that the investigators conducted the
investigation in a manner that is forensically sound. Every
layer should log events as they happen on that specific
layer. In doing so the log entries could be used to determine
what each of the different objects on different layers are
busy with simply by looking at the information logged by
the layers located underneath it. This functionality may be
crucial in proving or disproving that an error exists in
commercial closed-source software built on top of one of
the higher-level layers by simply inspecting the log entries
generated by the objects located in the layers located
beneath it.

Physical

Logging
Layer

Interpretation Layer

Abstraction Layer

Access Layer

Digital Evidence

B. The client/server model

The Client/server architecture has been chosen to manage
the storage requirements as well as some of the processing
requirements that may be needed by the forensics platform.
This decision will allow investigators in a possible
distributed environment to collaborate and contribute to the
same case simultaneously. The following diagram depicts
the client/server the will be used by the framework:

Evidence
Server

Analysis
Units

Capture
Unit

Evidence
Store

Write once,
read many

Write once,
read many

Trusted Enviroment Untrusted Enviroment

Fig. 3. The client/server system components and their

operating environments.

The proposed architecture consists out of three distinct units
namely:

• Evidence server
• Capture unit
• Analysis unit

These components will perform their duties in two different
environments, namely a trusted and untrustworthy
environment. It is assumed that the evidence server will
always be operating in a trusted environment while the
capture and analysis units may or may not operate in a
trusted environment.

1) The evidence server
The evidence server will be responsible for supplying basic
logging and storage facilities to capture and analysis units. It
is important to note that data stored by the evidence server
should be immutable, in other words not a single file ever
sent to server to be stored may either be modified or deleted;
instead a version control mechanism may be used to create a
new version of the file in question every time that a change
has been requested.

2) The capture unit
The purpose of the capture unit is to perform digital
evidence acquisition of a crime scene. Although the
captured evidence is stored on an evidence server, the
capture unit should still have the capability to store evidence
locally or on some form of storage medium as it may not
always be possible (or a good idea) to connect to a remote
evidence server to upload captured evidence from a crime
scene.
According to Carrier [2], there exist two types of evidence
acquisition methods, namely live and dead acquisition. In a
live acquisition evidence is taken from a system while it is
online, while the opposite holds for dead acquisition (also
known as a snatch-and-grab approach [1]): the machine in
question is taken offline first before an acquisition is
performed. Evidence collected through live acquisitions,
such as a list of open files or ports on a system may be very
descriptive but unfortunately data captured through live
acquisitions are known to have a lesser degree of trust

associated with it, since the acquisition is performed in an
untrustworthy environment [2] which may contain filter
software such as root kits.
Although evidence collected through dead acquisition may
be more forensically sound, there may be some instances
where a live acquisition is more preferable. The capture unit
should therefore be able to perform live as well as dead
evidence acquisitions.

3) The analysis unit
The analysis unit will be used by investigators to study
captured digital evidence in an attempt to uncover
information that may implicate possible suspects. The
analysis unit may or may not operate in a trusted
environment which means that sufficient measures needs to
be in place to ensure that the results obtained by the analysis
units are not manipulated in any way.

C. Layer distribution

The distribution of layers may depend entirely on the
scenario in which the platform needs to be used. One
extreme may be to place the physical, interpretation and
abstraction layer on the evidence server leaving the analysis
and capture units with the access layers. This arrangement
would in effect lead to a situation where thin-clients connect
to a server that does all the processing. The biggest problem
with this arrangement is cost in terms of network
communication time, processing time and storage. The
extreme opposite in which fat-clients only use the server as
a storage medium may also not be ideal in all situations.
Unfortunately there is no easy answer to the best way to
distribute the layers between the client/server components.
Fortunately the forensics platform will be designed in such a
way to accommodate various configurations which would
allow investigators to configure their systems according to
their specific needs.

VI. PROTOTYPING

An open-source project called the Reco Platform [14] has
been established to develop a forensic platform which
conforms to the architecture specified in this document. An
alpha version of the platform is available for download and
can be used to develop prototypes. At the moment of
writing, the physical, interpretation and abstraction layers
are supported by the Reco Platform. The platform currently
supports FAT as well as the EXT range of file systems and
has the capability to extract meta information from well-
known media types (which includes, but is not limited to,
mp3, ogg, asf and avi files).
To prove that the platform minimizes the amount of time
and skills needed to develop a forensics prototype, it has
been decided to develop two applications that make use of
the Reco Platform. The purpose of the first application was
to extract meta-information from files located on a disk
image. The purpose of the second application was to display
the meta-information extracted with the first application.
Amazingly, the first application consisted of a total of 40
lines of C++ code, while the second application consisted of
501 lines of C++ code. The amount of programming that
was done was kept to a minimum due to the rich forensics
library supplied by the platform. These two applications
have shown that the Reco Platform can be useful in situation

where forensic prototypes needs to be developed as the
platform enables developers to create prototypes with
relatively little effort.

VII. FUTURE WORK

The architecture of the planned forensic framework has
been discussed in some detail. More prototyping as well as
actual design and development of the various layers will
take place in the near future. A definite need also exists for
a secure logging mechanism that will allow external
evaluators to actually determine if a closed-source software
component is functioning correctly or compromising the
integrity of captured data by simply reviewing the log file
generated by components above or below it in the layering
model.

VIII. CONCLUSION

This paper emphasized the great need currently experienced
by the academic as well as the forensic investigation
community for an open forensic-investigations platform on
which forensic research prototypes can be built and tested.
With the help of such a platform, the development time of
forensic research prototypes could dramatically decrease
leading to an increase in digital forensic investigation
breakthroughs in a smaller amount of time.
The architecture has been defined based on industry needs
defined in literature. The architecture consists of a layered
client/server model. The layered approach will benefit
researchers by supplying them with common forensic
functionality that is needed so that they can take the focus
off the technical aspects regarding forensics and focus on
what is really important – their research questions.
The client/server model will benefit the forensic community
by allowing investigators to perform investigations in a
distributed team environment. Because collected evidence
data is stored in a trusted, central location, various
investigators will be able to simultaneously access and
contribute to a single case leading to better investigation
efficiency.
Overall the forensic framework address a need experienced
in the community and development should therefore
continue to ensure a better and safer digital environment for
all.

REFERENCES

[1] Adelstein, N. Live Forensics: Diagnosing your system
without killing it first. 2006. Commun. ACM, 49, 2.
ACM, 63-66.

[2] Carrier, B. D. Risks of live digital forensic analysis.
2006. Commun. ACM. ACM, 56-61.

[3] Casey, E. Investigating sophisticated security breaches.
2006. Commun. ACM 49, 2. ACM, 48-55.

[4] Casey, E. Network traffic as a source of evidence: Tool
strengths, weaknesses, and future needs. 2004. Digital
Investigations, 1. Elsevier, 28-43.

[5] Casey, E. Stanley, A. Tool review – remote forensic
preservation and examination tools. 2004. Digital
Investigations, 1. Elsevier, 284-297.

[6] Corey, V. Peterman, C. Shearing, S. Greenberg, M. S.,
Van Bokkelen, J. Network forensics analysis. 2002.
Internet Computing 6, 6. IEEE, 60-66.

[7] Eckstein, K. Forensics for advanced UNIX file systems.
2004. Proceedings of the 2004 IEEE workshop on
information assurance. IEEE, 377-385.

[8] FreeDOS32. Online: http://freedos-32.sourceforge.net
as on 12 April 2007.

[9] Kerr, F. C. Media analysis based on Microsoft NTFS
file ownership. 2006. Forensic Science International,
162. Elsevier, 44-48.

[10] Lyle, J. R. NIST CFTT: Testing disk imaging tools.
2003. International Journal of Digital Evidence 1, 4,
Winter 2003.

[11] Manson, D. Carlin, A. Ramos, S. Gyger, A. Kaufman,
M. Treichelt, J. Is the open way a better way? Digital
forensics using open source tools. 2007. Proceedings of
the 40th Annual Hawaii international conference on
system sciences. IEEE, 266b.

[12] Mohay, G. Technical Challenges and Directions for
Digital Forensics. 2005. Proceedings of the First
International Workshop on Systematic Approaches to
Digital Forensic Engineering. IEEE, 155-161.

[13] Pfleeger, C. P, Pfleeger, S. L. Security in computing,
third edition. 2003. Prentice Hall, 209.

[14] Reco Platform homepage. Online:
http://sourceforge.net/projects/reco as on 21 June 2007.

[15] Rogers, M. K. Seigfried, K. The future of computer
forensics: a needs analysis survey. 2004. Computers &
Security. Elsevier, 12-16.

[16] Tallard, T. Levitt, K. Automated Analysis for Digital
Forensic Science: Semantic Integrity Checking. 2003.
Proceedings of the 19th Annual Computer Security
Applications Conference. IEEE, 160-167.

[17] Wang, S. Measures of retaining digital evidence to
prosecute computer-based cyber-crimes. 2007.
Computer standards & interfaces, 29. Elsevier, 216-
223.

[18] Walker, C. Computer forensics: bringing the evidence
to court. Online:
http://www.infosecwriters.com/text_resources/pdf/Com
puter_Forensics_to_Court.pdf as on 12 April 2007.

[19] Wilsdon, T. Slay, J. Digital Forensics: Exploring
validation, verification & certification. 2005.
Proceedings of the first international workshop on
systematic approaches to digital forensic engineering.
IEEE, 48-55.

Renico Koen is a SAP application developer at EULabs,
South-Africa. He is also a member of Information and
Computer Security Architecture Research (ICSA) Group at
the University of Pretoria. His research interests include
software design and architecture as well as the utilization of
open-source software in development of large projects.

Martin Olivier is a professor at the Department of
Computer Science in the School of Information Technology
at the University of Pretoria. In addition to normal teaching
and research duties, he is the research coordinator of the
School of Information Technology. His current research
interests include privacy and digital forensics as well as
database, application and system security.

R Koen and MS Olivier, "An open-source forensics platform," Proceedings of the
Southern African Telecommunication Networks and Applications Conference 2007
(SATNAC 2007), Sugar Beach Resort, Mauritius, September 2007 (Published
electronically)

Source: http://mo.co.za

© The authors

http://mo.co.za

